LANGUAGE
Research #17

Today, the Chairman of True Leaf Medicine International Ltd., Michael Harcourt, has sent a letter to all stakeholders bringing up to date on the company’s remarkable achievements over the last 12 months. Since True Leaf went public in February 2015, Harcourt is serving as Chairman, before he was Vancouver’s former Mayor and former Premier of British Columbia. After a successful market launch recently in Canada, USA and Europe, True Leaf’s hemp-fused dog chews are well received by the market. Chris Parry took his hat off already in May and Rockstone also strongly believes that the company is well on track to become a serious contender in the pet foods industry in North America and Europe, possibly Asia soon as well. The company appears to be well ahead of the competition as its products take root in each market, a result of being the ‘first mover’ in a huge potential market. Bearing in mind that True Leaf recently just started to sell its products, readers should not expect mammoth revenues to be reported initially. Sales should start to increase significantly as their store penetration increases within their distribution reach and line extensions increase their order book.

 

True Leaf Corporate Update: Chairman‘s Letter to Stakeholders

July 25, 2016

To our valued stakeholders,

I want to take this time to bring you up to date on True Leaf‘s remarkable transformation over the last 12 months.

As you know, in 2013, the company filed an application under Health Canada’s Marihuana for Medicinal Purposes Regulations (MMPR) to become a Canadian licensed producer. It has passed through the preliminary and enhanced screening process of Health Canada’s review and is currently awaiting a ‘pre-license inspection’ approval.

While this process unfolds, we are focused on developing our long-term strategy: bringing products to market that contribute to healthy lifestyles for people and their pets.

We have advanced the development of our True Leaf Pet brand throughout 2015 and 2016. This is a natural complement to our MMPR application, as we are able to draw on the knowledge, contacts and experience of CEO Darcy Bomford, who had 25 years in the pet food industry prior to establishing True Leaf.

Under Darcy’s leadership, True Leaf Pet has entered the $104.9 billion global pet care industry with True Hemp, a line of hemp-focused pet chews and supplements marketed through natural pet health and veterinary channels in Canada, the US and Europe.

True Hemp functional chews for dogs align with True Leaf’s mission to provide quality of life for humans and their pets using hemp-based formulations. All three formulations of True Hemp Chews for dogs emphasize the importance of hemp as the primary active ingredient. Hemp supports cognitive health, the body’s response to inflammation, and skin and coat health – and is a source of omega fatty acids, gamma linolenic acid and other substances known to support good health in both people and pets.

Our strategy is to bring to market products that can successfully be sold around the world, meeting regulatory approval in each market. True Leaf‘s line of hemp products meets these goals and I am happy to say that we have successfully accomplished a number of major milestones:

• Our Canadian product launch: November, 2015

• Initiated Canadian online sales: January, 2016

• Our US product launch: March, 2016

• Set up US distribution center: March, 2016

• Our European product launch at Interzoo: May, 2016

• US online sales: June, 2016

• European subsidiary ‘True Leaf Pet Europe LLC’ created: July, 2016

• Our European production run: August, 2016

Remarkably, this plan has been accomplished in less than a year. At the same time, a number of initiatives are in progress, with further developments to come:

• Development of sales and distribution in the European market

• Hemp-based line extensions for the three current True Leaf Pet markets

• Feasibility review of direct-to-consumer hemp-based pet food for the Canadian and European markets.

• Analysis of future markets in the Asia and Pacific regions.

Wherever the True Leaf team goes, both suppliers and consumers are enthusiastic about True Leaf Pet’s True Hemp products. The markets, too, indicate approval of our strategy and products. In the past two and half months, we have added over $5M to our market capitalization while more than doubling our share price. This has allowed the company to put more than $750K in the bank and convert $300K of debt into shares, solidifying our balance sheet significantly. Subsequent financing may take place in the future as our strategic direction continues to evolve.

We have a strong foundation in place and the focus on marketing True Leaf Pet’s True Hemp products is strengthening. Marketing and sales updates will be published quarterly and we look forward to our continued success. Coupled with our continued interest in the secure supply of medicinal marijuana, we are confident that True Leaf Medicine International will continue to increase value for investors while providing people and their pets beneficial products for optimal quality of life.

Sincerely,

Michael Harcourt, Chairman
True Leaf Medicine International Ltd.

 


  

INFOGRAPHIC: Functional dog, cat food and pet treat trends
Consumers’ purchases reflect a concern for their pets’ health

By Tim Wall for PetFoodIndustry.com on July 18, 2016; Infographic by Jennifer Keller, WATT Global Media

As pet food becomes increasingly specialized, with manufacturers catering to consumers’ desires to meet the individual needs of their pets, functional ingredients are becoming more of a trend than ever.

High omega-3 pet food formulas, for example, are purchased by 14 percent of dog owners and 10 percent of cat owners in the US, according to a March 2016 Packaged Facts report, Pet food in the US. Roughly 11 percent of dog owners and 8 percent of cat owners purchase foods with high antioxidant claims, while 7 percent of dog owners and 6 percent of cat owners look for foods with probiotics/prebiotics.

What are functional ingredients?

Functional ingredients in pet foods are marketed as having special nutritional benefits in terms of general wellness or address specific health concerns such as digestion, joint and cartilage function, immune system strength or dental health. In a sense, all pet food is functional. For years there have been specialized pet food formulations by life stage, breed size and activity level, weight control, specific ingredient avoidance and other issues.

These functional pet food types echo the targeted marketing of functional foods for humans. Fueling this trend is America’s increasing attention to health issues, both human and pet, which ties in to an aging and often overweight population, again both human and pet.

“The same health-conscious Boomers and Millennials are driving the need for new innovative nutritional solutions for their beloved companion animals,” Juan Gomez-Basauri, PhD, global director for companion animal nutrition with Alltech, told Petfood Industry. “As pet parents age, so do their pets, and we then see the same functional ingredients, like probiotics (Lactobacillus bacteria), prebiotic fibers (beta-glucans, manna oligosaccharides), nucleotides and omega-3 fatty acids (algae-sourced), applied to pet foods.”

Industry opportunities

With such a wide range of options for catering to the need for functional ingredients in pet foods, how is the industry taking advantage of such an opportunity? Companies are individualizing their efforts, playing to their strengths and choosing ingredients that will best contribute to a complex market.

New functional ingredient concepts come in two different ways:

1) through ideas on how to improve our pets’ health, and

2) from novel ingredients introduced through suppliers and manufacturers.

The first way causes nutritionists to search constantly through the market and researchers to find novel ingredients that could achieve the target goals. This requires time and huge networking in order to find the proper solution. The second one is to be constantly in contact with ingredients suppliers and manufacturers and let them know that you are always open to novelties.

 


  

 

Hemp is Not Marijuana

True Leaf’s pet product line contains hemp as one of the primary ingredients; providing the health benefits of hemp is what sets True Leaf apart from the competition. Hemp and marijuana are different varieties of the same plant species of ‘Cannabis Sativa’. Marijuana plants contain high levels of THC. Hemp, on the other hand, is non-psychoactive and contains very little THC (less than 0.2% by law), but certain cultivars contain cannabidiol (CBD). Hemp seed oil, a major component of hemp seed itself – and of True Leaf Pet’s product line – has a variety of beneficial properties and is showing great promise on its own as a supplement. Because hemp oil is extracted from the industrial hemp plant, it contains no psychoactive reactors.

Hemp seed oil is extremely high in omega-6 and omega-3 fatty acids in the ratio of 3:1, which is required by dogs for optimal health and well-being. Hemp contains known antioxidants from tocopherols and hosts a variety of other beneficial properties including anti-inflammatory compounds from terpenes, plant sterols and methyl salicylate – a relative of acetylsalicylic acid or ‘aspirin’. Hemp oil helps to support the moisture level in a dog’s skin and fur, and supports the body‘s ability to heal skin disorders such as dry nose, dog acne, dog eczema, dog rash and dog dandruff. Further, hemp seed oil supports the body‘s ability to enhance blood circulation, stimulate a dog’s cognitive thinking and can help thicken fur texture and lessen shedding.

Hemp is legally refined in industrial factories for textile and nutritional use: it is often consumed and mixed into other products including cereal, granola bars and hemp dog treats. Hemp chews for dogs are increasing in popularity because of its significant potential health benefits that may include joint pain reduction, skin and coat nourishment and antioxidant support.

 


  

Introducing: True Hemp™ HIP+JOINT, HEALTH and CALMING formulations

Im letzten Report von Rockstone wurden die Trends in der Tiernahrungsbranche präsentiert, einschliesslich einer Einführung in das Thema Hanf (siehe Report hier). In dieser Ausgabe werden Details über die Rezepturen der True Hemp Produktreihe vorgestellt: 

True Leaf Pet’s new product line, True HempTM, uses hempseed powder in combination with other ingredients that complement the studied benefits of hempseed. The goal is that the additional ingredients in the treats help to emphasize the intrinsic qualities provided by the hempseed. True HempTM HIP & JOINT offers anti-inflammatory joint support; True HempTM HEALTH boosts general health and well-being, and True HempTM CALMING is for anti-anxiety and calming effects.

True Hemp HIP+JOINT Support (True Spirit™ Formula)

Degenerative joint disease (DJD) or osteoarthritis (OA) is one of the most common chronic musculoskeletal diseases and causes of lameness in dogs47,48. Osteoarthritis is a painful, inflammatory disease of the joints, which is characterized by cartilage degeneration, boney hypertrophy at joint margins, and synovial membrane changes49-51. Dogs are usually stoic animals, and can hide the signs of OA until the disease has progressed significantly.

Conventional treatment of OA has relied on drugs that control pain and inflammation, like non-steroidal anti-inflammatory drugs (NSAIDs). NSAIDs treat symptomatically, and can be associated with numerous side effects such as irritation of the gastrointestinal tract, renal toxicosis, and hepatic disease (especially in Labradors)52,53. Dogs are often used as research models for osteoarthritis in humans, so comparisons for treatment options are often made. It has been reported that 60–90% of dissatisfied human arthritis patients sought complementary therapies for their disease due to the side-effects associated with NSAIDs54. For these reasons, alternative and adjunctive therapies for the treatment and management of OA in dogs are desirable.

A nutraceutical that may be of benefit as an alternative approach for OA multimodal therapy is a product based on Perna canaliculs, or the green-lipped mussel (GLM). Analysis has shown GLM powder to be a rich source of nutrients including glycosaminoglycans such as chondroitin sulfates, amino acid (glutamine), omega-3 fatty acids including DHA and EPA, eicosatetraenoic acid, vitamins E and C, and minerals (zinc, copper, manganese)55,56.

A 2007 study demonstrated proof of absorption of the omega-3 fatty acids after administration of GLM56. While it is not totally clear how GLM functions in the body57, many mechanisms have been proposed. In vivo studies have demonstrated anti-inflammatory effects, and GLM extracted lipids have been shown to possess significant cyclooxygenase (COX) and lipoxygenase (LOX-5) inhibitory activity58. This indicates that GLM seems to be working on the same mechanisms as newer NSAIDs58. Additionally, GLM may have immune system regulatory function, and promote humoral and cellular activity59. The chondroitin sulfate and the other glycosaminoglycans provided by GLM are building blocks of cartilage anabolism. They assist in joint capsule water retention and help in adaptation to pressure changes; thereby absorbing shock induced by abnormal joint stress60.

Multiple studies have been conducted on GLM’s efficacy and safety in humans and animals. GLM is documented to be efficacious in treating experimental arthritis in rats58,61, arthritis in humans62-65, chronic lameness in horses66, and arthritis in dogs56,67-69. A 2013 study56, provides strong clinical evidence to support feeding dogs with OA a GLM based diet. The weight bearing ability significantly increased over the 60 day period that GLM was introduced into a standardized controlled diet56.

A double control and double blinded clinical trial in dogs69 used a dose of 20-49 mg/kg/day depending on dog body weight for the first 10 days (loading dose), then half of the loading dose (10-25 mg/kg/day) for the rest of the 8 weeks. Dogs were also evaluated at 12 weeks. Dogs improved in the GLM group when compared to the placebo, although as expected, Carprofen (an NSAID) was a more effective treatment. This study, along with another, observed that beneficial effects of GLM treatment could last for 2-3 weeks after cessation of therapy if given for at least two months69,70. True Spirit contains comparable amounts of GLM with a loading dosage of approximately 26-66 mg/kg over 10 days, and a maintenance dose of approximately 13-33 mg/kg depending on body weight.

Additionally, GLM is reported to have no potential severe side effects in humans62-65, and in dogs56,68,69. In rats, GLM has been shown to have favorable GI tolerability and unaltered platelet aggregation at a high dose of 300 mg/kg57,58. Studies in humans have shown that a high dose of 3000 mg/day not only did not significantly alter gut microbiota, but also significantly improved gastrointestinal symptoms in OA patients64,65. Research also suggests that GLM may have chondroprotective properties due to its glycosaminoglycans, especially chondroitin sulfate, content72-74.

An additional nutraceutical alternative to NSAIDs is curcumin, a polyphenolic compound commonly found in the household spice turmeric75,76. Curcumin has been found to be a potent anti-inflammatory, antioxidant, antiseptic, and anticancer agent77-79. Additionally it has been shown to have therapeutic potential in various chronic illnesses where inflammation is known to play a major role80. Curcumin has similar effects to NSAIDs in suppressing the production and catabolic action of pro-inflammatory cytokines that are known to play a key role in the pathogenesis of OA81. In vitro studies have shown curcumin to be an effective scavenger of reactive oxygen species (ROS) and reactive nitrogen species82,83. This is of importance, because the degradation of cartilage results from the combination of mechanical stress and increases of ROS and metalloproteinases84. Additional studies on mares affected by OA and osteochondritis have confirmed that curcumin possesses anti-inflammatory activity through the suppression of pro-inflammatory cytokines and catabolic enzymes85.

Two studies86,87 have examined a twice-daily dose of 4 mg/kg curcuminoids and curcumin phytosome, respectively, for the treatment of osteoarthritis in dogs, and it had minimal adverse effects. The 2003 study, an 8 week trial, showed a statistically significant treatment effect in favor of turmeric extract at this dose86. The 2012 study, a 20-day study, observed that curcumin phytosome (CurcuVET®) regulated molecular targets of inflammatory response, including targets additional to those seen with NSAIDs. This study concluded that curcumin can offer good complementary support for OA treatment, but studies on larger populations are needed for definitive conclusions87.

At this time, studies to determine an effective daily supplemental dose of curcumin in dogs have not been completed. True Spirit contains 35 mg of turmeric root extract, with a dosing range of 3-9 mg/kg per dose depending on body weight. It is suggested to give the maintenance dose twice a day for 10 days (loading dose), and then resume with the maintenance dose once a day. Although turmeric extract has been shown to be safe even at very high dosage levels (e.g. 8g/day) in humans88; we believe that a lower long-term dose is appropriate given the lack of long term studies on turmeric supplementation in dogs. True Spirit’s dosing range is comparable to the previously examined doses. Other nutraceuticals, like the previously mentioned CurcuVET®, contains 50 mg of Curcumin Phytosome, equating to a range of 4 – 12 mg/kg daily89.

In addition to hempseed meal, the True Spirit product line contains GLM and turmeric extract at doses researched as both safe and therapeutic. Currently, there are no studies on the effects of hempseed, GLM, and turmeric together. The goal of this combination is to promote analgesia, anti-inflammation, and chondroprotection for OA patients.

True Hemp HEALTH Support (True Love™ Formula)

With advancements in veterinary medicine, the health and welfare of companion animals is continuously improving, and therefore the longevity of animals is increasing. Aging dogs are common population seen by clinicians. A 2012 email survey revealed that 33.2% of dogs were 6 to 10 years old, and 14.7% were older than 11 years; when compared to previous data, this represented an increase of 9.1% in the number of dogs older than 6 years in the United States90.

What defines when a dog transitions into a senior or geriatric dog is highly variable and subjective91. For one example, the Senior Care Guidelines Task Force of the American Animal Hospital Association considers dogs to be seniors when they are in the last 25% of their predicted life span based on species and breed92. Whether or not a dog matches the arbitrary guidelines of being a “senior,” it is important to assess in adult dogs both normal age-related change and age-related diseases. Common age-related diseases include but are not limited to cognitive dysfunction, chronic kidney disease, cancer, osteoarthritis, periodontal disease, and heart disease93-98. The incidence of disease in the aging dog population likely represents a continuum from normal to normal aging changes to disease caused by aging changes91. It is important to note, however, that different organ systems likely progress along the continuum at different rates depending on the individual animal91. Both normal age-related changes and age-related diseases are potentially amenable with nutritional intervention. It is important to consider that some interventions may be contraindicated in some conditions, so an individualized and commonly multimodal approach versus a universal approach is recommended91.

Aging dogs have the potential to acquire dysfunctions in more than one organ system. As mentioned previously, long chain omega-3 PUFAs, like EPA and DHA, can have beneficial health effects for our aging patients; these include cardio-protection99-101, roles in neurological development and cognition preservation102-107, as well as modulation of the inflammatory response108-110. As inflammation provides the basis for many chronic health disorders, the physiologic functions of omega-3 PUFAs and their mechanisms in reducing inflammation are currently believed to be essential for organ health and function111. Omega-3 fatty acids have been observed to benefit a variety of disease processes including hypertension112, renal diseases113,114, arthritis115-117, skin disease118-121, gastrointestinal diseases122,123, and even cancer124.

Omega-3 fatty acids, especially DHA, have been researched for years for their roles in cancer prevention and as an adjunctive therapy. Experimental cancer models indicate omega-3 PUFAs, especially EPA and DHA, may be preventative in the development of carcinogen-induced tumors, the growth of solid tumors, and the occurrence of cachexia and metastatic disease125-129. DHA appears to influence the growth of many types of cancer including both breast and prostatic cancer130-133. Elevated omega-3 fatty acids, especially DHA, have also been found to be associated with higher metastasis-free survival in breast cancer134.

Current data is lacking on DHA‘s role in decreasing cancer risk in dogs, but there is current research on the use and benefit of DHA as an adjunctive therapy in dogs already diagnosed with cancer. For example, a 2000 study135 showed a direct correlation between DHA blood levels and improved disease-free interval for dogs with lymphoma treated with doxorubicin chemotherapy and a diet supplemented with n-3 fatty acids in the form of fish oils. This study also showed no clinically significant toxicities with DHA supplementation other than transient gastrointestinal distress linked to dietary change135. Therefore, there may be a benefit of doubling the dosage of the True Love™ formula to patients that have already been diagnosed with cancer, to give a larger dosage of DHA. This however, should only be done under guidance of a veterinarian.

While hempseed products can provide a source of the ALA, SDA and GLA, True Love contains additional algae-sourced DHA, a long chain omega-3 fatty acid. The daily dose of DHA is variable depending on how much is provided in the base diet. True Love contains an average of 10 mg/kg dose of algae-based DHA (ranges from 6.5-16.5 mg/kg based on weight). Algae-based DHA is better than DHA derived from fish oil due to the potential of heavy metal and organophosphate contamination. The dose of DHA in True Love is comparable to other well-known omega-3 supplements including Welactin (11 mg/kg/day) and Omega Tri-V Capsules (6-13 mg/kg/day depending on bodyweight)136,137.

Oxidative stress results from a disturbance in the balance between oxidant forces and antioxidant defenses in favor of the oxidants138. Oxidants are formed as a normal product of aerobic metabolism, and in health, animals are equipped to deal with that level of oxidative stress. In pathophysiological conditions, however, oxidants, like reactive oxygen species (ROS), can be produced at elevated rates causing damage to crucial cellular components, such as proteins, lipids, lipoproteins and deoxyribonucleic acid (DNA)138,139.

Aging has been shown to inconsistently affect antioxidant status, with decreases, no change, or increases in specific antioxidant compounds140,141. Oxidative damage that accumulates with age is thought to play a significant role in the development and progression of a number of diseases, such as cancers, cardiovascular diseases, osteoporosis, and other degenerative diseases like cognitive dysfunction139,142,143. The use of exogenous antioxidants is intended to boost depleted endogenous defense, assist in removing oxidants, and to ultimately help the body to return to an oxidative equilibrium.

Studies on oxidative stress and antioxidants specific to dogs show possible areas for intervention. Viviano et al. found that clinically ill dogs had decreased red blood cell glutathione concentrations; glutathione being the major intracellular antioxidant in all mammalian cells that functions to maintain the cellular redox state144,145. Studies in oncology have seen altered levels of antioxidants in dogs with mast cell tumors, and changes in antioxidant capacity with oxidative stress and significant increases in ROS in dogs with lymphoma146-148. Kapun et al. found oxidative stress with increased lipid peroxidation in dogs with atopic dermatitis149.

In addition, the brain demonstrates the oxidative nature of aging well. In dogs, brain aging is complex, with both similarities and differences when compared to humans91. There are three main reasons why oxidative changes are particularly detrimental in the brain. The first is its high metabolic rate resulting in the production of reactive oxygen species, particularly in older individuals150. The second is its high lipid content, which increases its susceptibility to oxidative damage, and the third is its limited regenerative capacity, making damage more apparent91,151,152. In one study, a combination of environmental enrichment and antioxidants improved clinical signs related to cognitive dysfunction in dogs153. In another study, dogs fed a diet enriched in antioxidants showed improved learning, recognition and agility compared to those on a control diet152. Polyphenols are common constituents of plant origin foods, like fruit, and are a major source of dietary antioxidants154. The phenolic groups in polyphenols act on free radicals by accepting an electron to form relatively stable phenoxyl radicals; this disrupts the chain oxidation reactions in cellular components154.

The True Love™ formula contains pomegranate seed extract (PSE), which contains polyphenolic compounds called tannins. There are minimal current studies on PSE and its clinical use in dogs; however, PSE has been studied to have antioxidant and cytoprotective activities on human cells as well as canine endothelial cells155-157. Additionally, pomegranate seed extract has been shown to have protective effects in both chemotherapeutic induced hepatotoxicity in rabbits and rats and nephrotoxicity in rats158,159 True Love™ contains PSE for its antioxidant effects and potential benefit for the aging canine.

Aging dogs can acquire a multitude of health issues, including but not limited to cancer, cognitive dysfunction, heart disease, renal disease, gastrointestinal disease, and skin disease. While there can be breed specificities for certain conditions, no one dog is immune. In addition to hempseed meal, the True Love product line contains polyphenols and algae-based DHA. Currently, there are no studies on the effects of hempseed, polyphenols, and DHA together. The goal of this combination is to be used as a part of multimodal therapy on an individualized basis for the promotion of general health and antioxidant support for aging dogs.

True Hemp CALMING Support (True Calm™ Formula)

Behavior problems are common amongst small animals. Recognition, intervention, and treatment by a veterinarian are needed to preserve the human-animal bond, prevent abandonment and euthanasia, and decrease mental suffering of the animal158. The well-established connection of mental and physical health in human medicine is starting to be recognized in the veterinary field as welll159. Chronic stress can contribute to a wide range of physical medical conditions including gastrointestinal, dermatologic, and urinary tract disorders, as well as immunosuppressionl158. Therefore, physical wellbeing is not the only pertinent feature of a healthy patient; behavior problems are equally important for veterinarians to prevent and addressl158.

Dogs may be presented to practitioners with a variety of behavioral complaints, including aggression, anxiety, destructive behavior, inappropriate elimination, disobedience, repetitive or compulsive disorders, and cognitive dysfunctionl160. After ruling out a primary medical condition, behavioral problems are best targeted using multimodal therapy. Treatment modalities include owner education with behavior modification training, environmental manipulations, exercise, and in some cases, pharmacologic interventionsl160.

Conventional pharmacologic interventions include tricyclic anti-depressants and serotonin reuptake inhibitors. At high doses, or when used in combination with other drugs that enhance serotonin transmission, a serious and potentially fatal condition known as serotonin syndrome can result. This causes signs of confusion, agitation, hyperthermia, tachycardia, nausea, diarrhea, muscle tremors, and coma. These drugs should not be used concurrently with monoamine oxidase inhibitors or with other antidepressantsl161. Benzodiazepines are additionally used for their short and immediate effectsl162,163. Their therapeutic efficacy, however, is not well established in dogs. Benzodiazepines also have potential side effects, which include ataxia, sedation, paradoxical excitation, disinhibition (leading to an increased possibility of aggression), and a rebound effect on withdrawall164. Therefore, there is a demonstrated need for alternative safe and effective therapeutics in the treatment of persistent behavioral disorders.

L-theanine, an amino acid found in green tea that is structurally similar to glutamic acid, causes an increase in the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) along with serotonin and dopamine levels in the brainl165. Data-based studies have shown L-theanine to be effective in dogs to decrease fear of strangersl166, and in cats to decrease anxietyl167. In both of these studies, no side effects related to treatment were seen. A recent study has shown L-theanine to be an effective treatment for behaviors associated with storm sensitivity in dogsl168. In this study, Anxitane® tabletsl169, a nutraceutical supplement composed of a 99.95% pure active L-isomer form of theanine, were used, and each dog received the labeled dosage. Depending on weight, the dosage ranged from 2.5-5 mg/kg of L-theanine every 12 hours. This study showed minimal to no side effects with only one dog that demonstrated increased anxiety. True Calm contains 25 mg of L-Theanine and uses a comparative dosage of about 2.2-7.7 mg/kg every 12 hours. With this similar dosing regimen, we hypothesize that True Calm will see similar beneficial effects by providing relief from the intensity of common behavior problems.

Matricaria chamomilla, commonly known as chamomile, is a plant that is an annual member of the daisy family. Chamomile contains volatile oils, flavonoids, hydroxycoumarins, and mucilagesl170,171. As one of its traditional uses as a sedative tea in humans, chamomile may have use in veterinary behavior medicine for sedative and anxiolytic propertiesl172. Limited information is currently available on its efficacy and dosing in veterinary medicine, but some studies have examined potential mechanisms for anxiolytic activity in ratsl173-175. In humans, results from a controlled clinical trial on chamomile extract for generalized anxiety disorder (GAD) suggests that it have modest anxiolytic activity in patients with mild to moderate GADl176. Inhaled chamomile vaporl177 and chamomile essential oilsl178 have also been found to be beneficial in improving mood/behaviors in humans and dogs respectfully. M. chamomilla preparations are generally regarded as safe and long-term administration in rats, rabbits, and guinea pigsl179,180. In dogs, side effects of vomiting and hypersalivation have been reportedl181. It is important to note that coumarin anticoagulants may be potentiated by chamomile because of its hydroxycoumarin contents; therefore, use of chamomile products with antithrombotics should be avoidedl170.

Melissa officinalis or lemon balm, is a perennial member of the mint family. Lemon balm contains volatile oil, glycosides, caffeic acid derivatives, flavonoids, and triterpene acidsl170. Historically, lemon balm was used for treating nervousness, insomnia, headache, and other ailmentsl172. Little information is currently available on the efficacy of lemon balm in veterinary patients, but there is a potential for its value in for sedationl182, and prevention/treatment of cognitive decline.

With the human medical profession’s growing interest in Alzheimer’s disease, lemon balm has been an attractive nutraceutical due to possible memory improving propertiesl183. In a 2003 study, human patients given lemon balm extract had improved agitation and cognitive scores when compared to controlsl184. Another study concluded dosages of commercial lemon balm extract improved cognitive performance and mood in healthy, young peoplel185. Canine cognitive dysfunction (CCD), a common neurodegenerative condition geriatric dogs, shares several characteristics with human Alzheimer’s disease (AD)l186-188 Restlessness and anxiety are some of the common clinical signs associated with CCDl189 Therefore, lemon balm has potential value in veterinary patients with CCD.

Although limited toxicology information is available, especially in dogs, lemon balm has a long history of safe usage in humans, with no adverse side effects reportedl185,190. Additionally, it is important to note that lemon balm products must be carefully sealed and protected from light and moisture, particularly if it is intended for use as a sedative. The shelf life is limited to six months because of the degradation of bioactive componentsl170,180.

Behavior problems in dogs are equally as important to address as physical medical problems. In addition to hempseed meal, the True Calm product line contains L-theanine, chamomile and lemon balm. Currently, there are no studies on the effects of hempseed, L-theanine, chamomile and lemon balm together. The goal of this combination is to provide anti-anxiety and calming effects for dogs with behavior problems. True Calm is meant to be an adjunctive therapy to be used alongside other modalities such as behavior modification training, environmental manipulations, and exercise. It is not intended for use in animals with severe behavior problems. If the dog’s condition worsens or does not improve within thirty (30) days of treatment, please discontinue and consult a veterinarian.

Conclusion

Osteoarthritis, cancer, and behavior problems are common issues seen in dogs of all ages. These diseases can be painful, physically taxing, and anxiety provoking, often drastically decreasing our pets’ quality of life. With a multimodal therapeutic approach, nutraceuticals can help in the management of these diseases. Hempseed is a unique source of proteins, fatty acids, cannabidiol, and terpenoids. Individual components of hempseed products have been found to have anti-inflammatory, analgesic, neuro-protective, anxiolytic, and anti-cancer effects.

True Leaf’s nutraceutical product line for dogs features hempseed powder in combinations with other active ingredients that compliment these studied benefits. While there are no current studies on the combinations of these active ingredients, information regarding their individual safety and efficacy is available from published sources in both human and veterinary literature.

True Spirit combines hempseed powder with green-lipped muscle and curcuminoids for anti-inflammatory joint support.

Truelove combines hempseed powder with pomegranate polyphenols and the omega-3 fatty acid, docosahexaenoic acid (DHA), for decreasing the risk of developing cancer and boosting general health.

True Calm uses hempseed powder, L-theanine, calming chamomile and lemon balm for anti-anxiety and calming effects.

As an adjunctive treatment to conventional therapies, True Leaf’s product line can help enhance the quality of life of dogs.

References

47. Bennett, D. Joints and joint diseases. Canine Orthopedics. Ed: W. Whittick. Philadelphia, Lea & Febiger. 1990. 776-778.

48. Innes, JF. Diagnosis and treatment of osteoarthritis in dogs. In Practice. 1995. 17: 102–109.

49. Goldring, MB. Osteoarthritis and cartilage: the role of cytokines. Curr. Rheumatol. Rep. 2000. 2:459–465.

50. Peat, G; McCarney, R; Croft, P. Knee pain and osteoarthritis in older adults: a review of community burden and current use of primary health care. Ann. Rheum. Dis. 2001. 60:91–97.
51. Bellamy, N; Carr, A; Dougados, M; Shea, B; Wells, G. Towards a definition of “differences” in osteoarthritis. J. Rheumatol. 2001. 28:427–430.

52. FDA. US ADE (Adverse Drug Experience) reports summary 1998. Animal Pharm. 1999. 435:9.

53. MacPhail, CM; Lappin, MR; Meyer, DJ; Smith, SG; Webster, CRL; Armstrong, PJ. Hepatocellular toxicosis associated with administration of carprofen in 21 dogs. J Am Vet Med Assoc. 1998. 212:1895–901.

54. Ahmed, S; Anuntiyo, J; Malemud, CJ; Haqqi, TM. Biological basis for the use of botanicals in osteoarthritis and rheumatoid arthritis: a review. Evid Based Complement Alternat Med. 2005. 2:301–308.

55. Murphy, KJ; Mann, NJ; Sinclair, AJ. Fatty acid and sterol composition of frozen and freeze-dried New Zealand Green Lipped Mussel (Perna canaliculus) from three sites in New Zealand. Asia Pac J Clin Nutr. 2003. 12:50–60.

56. Rialland, P; Bichot, S; Lussier, B; Moreau, M; Beaudry, F; RE del Castillo, J; Gauvin, D; Troncy, E. Effect of a diet enriched with green-lipped mussel on pain behavior and functioning in dogs with clinical osteoarthritis. 2013. Canadian J of Vet Res. 77:66-74.

57. Rainsford, KD; Whitehouse, MW. Gastroprotective and anti-inflammatory properties of green lipped mussel (Perna canaliculus) preparation. Arzn Forsch. 1980. 30:2128–2132.

58. Whitehouse, MW; Macrides, TA; Kalafatis, N; Betts, WH; Haynes, DR; Broadbent, J. The anti-inflammatory activity of a lipid fraction from the New Zealand green lipped mussel. Inflammopharmacology. 1997. 5:237–246.

59. Mani, S; Lawson, JW. In vitro modulation of inflammatory cytokine and IgG levels by extracts of Perna canaliculus. BMC Complement Alternat Med. 2006. 6:1.

60. Bauer, JE. Evaluation of nutraceuticals, dietary supplements, and functional food ingredients for companion animals. J Am Vet Med Assoc. 1999. 218:1755–1760.

61. Macrides, TA; Treschow, AP; Kalafatis, N; Wright, PFA. The anti-inflammatory effects of Omega-3 tetraenoic fatty acids isolated from a lipid extract from the New Zealand green-lipped mussel. Proceedings of the 88th American Oil Chemists Society Annual Meeting: May 1997, Seattle; 1997.

62. Gibson, SLM; Gibson, RG. The treatment of arthritis with a lipid extract of Perna canaliculus: a randomized trial. Complement Ther Med. 1998. 6:122–126.

63. Cho, SH; Jung, YB; Seong, SC; Park, HB; Byun, KY; Lee, DC; Song, EK; Son, JH. Clinical efficacy and safety of Lyprinol, a patented extract from New Zealand green-lipped mussel (Perna canaliculus) in patients with osteoarthritis of the hip and knee: a multicenter 2-month clinical trial. Allergy Immunol. 2003. 6:212–216.

64. Coulson, S; Vecchio, P; Gramotnev, H; Vietta, L. Green-lipped mussel (Perna canaliculus) extract efficacy in knee osteoarthritis and improvement in gastrointestinal dysfunction: a pilot study. Inflammopharmacol. 2012a. 20:71-76.

65. Coulson, S; Butt, H; Vecchio, P; Gramotnev, H; Vietta, L. Green-lipped mussel extract (Perna canaliculus) and glucosamine sulphate in patients with knee osteoarthritis: therapeutic efficacy and effects on gastrointestinal microbiota profiles. Inflammopharmacol. 2012b. 21;1:79-90. eCAM. 2009. 6;3:365-373.

66. Cayzer, J; Hedderley, D; Gray, S. A randomized, double-blinded, placebo-controlled study on the efficacy of a unique extract of green-lipped mussel (Perna canaliculus) in horses with chronic fetlock lameness attributed to osteoarthritis. Equine Vet Journal. 2012. 44:393-398.

67. Bierer, TL; Bui, LM. Improvement of arthritic signs in dogs fed green-lipped mussel (Perna canaliculus). J Nutr. 2002. 132:1634–1636.

68. Pollard, B; Guilford, WG; Ankenbauer-Perkins, KL; Hedderley, D. Clinical efficacy and tolerance of an extract of green-lipped mussel (Perna canaliculus) in dogs presumptively diagnosed with degenerative joint disease. New Zel Vet J. 2006. 54:114–118.

69. Hielm-Bjorkman, A; Tulamo, RM; Salonene, H; Raekallio, M. Evaluating Complementary Therapies for Canine Osteoarthritis Part I: Green-lipped Mussel (Perna canaliculus). eCAM. 2009. 6;3:365-373.

70. Gibson, RG; Gibson, SLM; Conway, V; Chappell, D. Perna canaliculus in the treatment of arthritis. Practice. 1980. 224:955–960.

71. Audeval, B; Bouchacourt, P. Etude controle´e en double aveugle contre placebo, de l’extrait de moule Perna canaliculus (moule aux orles vertes) dans la gonoarthhrose. Gaz Medicale. 1986. 93:111–116.

72. Bassleer, C; Henrotin, Y; Franchimont, P. In vitro evaluation of drugs proposed as chondroprotective agents. Int J Tissue React. 1992. 14:231–241.

73. Korthauer, W; Torre, J. Treatment of deforming arthropathy in working dogs with ‘canosan’, a new glycosaminoglycan preparation. Kleintierprax. 1992. 37:467–478.

74. Bucci, LR. Chondroprotective agents: glucosamine salts and chondroitin sulfates. Townsend Lett Dr. 1994. 1:52–54.

75. Stansby, G; Fuller, B; Jeremy, J; Cheetham, K; Rolles, K. Endothelin release-a facet of reperfusion injury in clinical liver transplantation? Transplantation. 1993. 56:239–240.

76. Kagan, VE; Tyurina, YY. Recycling and redox cycling of phenolic antioxidants. Ann. N. Y. Acad. Sci. 1998. 854:425–434.

77. Commandeur, JNM; Vermeulen, NPE. Cytotoxicity and cytoprotective activities of natural compounds. The case of curcumin. Xenobiotica. 1996. 26:667–680.

78. Surh, YJ; Chun, KS; Cha, HH; Han, SS; Keum, YS; Park, KK; Lee, SS. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-_B activation. Mutat. Res. 2001. 480:243–268.

79. Miller, JSM; Angeles, FM; Reuter, BK; Bobrowski, P; Sandoval, M. 2001. Dietary antioxidants protect gut epithelial cells from oxidant-induced apoptosis. BMC Complement. Altern. Med. 2001. 1:11.
80. Aggarwal BB; Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. The International Journal of Biochemistry and Cell Biology. 2009. 41:40-59.

81. Shakibaei, M; John, T; Schulze-Tanzil, G; Lehmann, I; Mobasheri, A. Suppression of NF-_B activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: implications for the treatment of osteoarthritis. Biochem. Pharmacol. 2007. 73:1434–1445.

82. Sreejayan, N; Rao, MNA. Free radical scavenging by curcuminoids. Arzneimittel Forschung – Drug Research. 46:169–171.

83. Sreejayan, N; Rao, MNA. Nitric oxide scavenging by curcuminoids. J. Pharm. Pharmacol. 1997. 49:105–107.

84. Henrotin, Y; Kurz, B. Antioxidant to treat osteoarthritis: dream or reality? Curr. Drug Targets. 2007. 8:347–357.

85. Farinacci, M; Gaspardo, B; Colitti, M; Stefanon, B. Dietary administration of curcumin modifies transcriptional of genes involved in inflammatory cascade in horse leukocytes. Italian J. Anim. Sci. Atti del XVIII Congresso Nazionale A.S.P.A, Palermo, June 9–12. 2009. 84–86.

86. Innes, JF; Fuller, CJ; Grover, ER; Kelly, AL; Burn, JF. Randomized, double-blind, placebo controlled parallel group study of P54FP for the treatment of dogs with osteoarthritis. Vet. Rec. 2003. 152:457–460.

87. Colitti, M; Gaspardo, B; Della Pria, A; Scaini, C; Stefanon, B. Transcriptome modification of white blood cells after dietary administration of curcumin and non-steroidal anti-inflammatory drug in osteoarthritic affected dogs. Veterinary Immunology and Immunopathology. 2012. 147:136-146.

88. Sharma, RA; Steward, WP; Gescher, AJ. Pharmacokinetics and pharmacodynamics of curcumin. Adv Exp Med Biol. 2007. 595:453–470.

89. ThorneVET. “Nutrition Label of CurcuVET®.” Accessed 30 January 2016. <https://www.thorne.com/products/exclusive/dp/curcuvet-sa50>

90. Proschowsky, HF; Rugbjerg, H; Ersboll, AK. Mortality of purebred and mixed-breed dogs in Denmark. Prev Vet Med. 2003. 58; 1-2:53–74.

91. Craig LE. Cause of death in dogs according to breeds: a necropsy survey of five breeds. J Am Anim Hosp Assoc. 2001. 37:438–443.

92. Adams, VJ; Evans, KM; Sampson, J; Wood, JLN. Methods and mortality results of a health survey of purebred dogs in the UK. Journal of Small Animal Practice. 2010. 51;10:512–524.

93. Michell, AR. Longevity of British breeds of dog and its relationships with sex, size, cardiovascular variables and disease. Veterinary Record. 1999. 145;22:625–629.

94. Bronson, RT. Variation in age at death of dogs of different sexes and breeds. American Journal of Veterinary Research. 1982. 43;11:2057–2059.

95. Bonnett, BN; Egenvall, A. Age patterns of disease and death in insured Swedish dogs, Cats and Horses. Journal of Comparative Pathology. 2010. 142;1:S33–S38.

96. MacEwen, EG. Spontaneous tumors in dogs and cats: models for the study of cancer biology and treatment. Cancer and Metastasis Reviews. 1990. 9;2:125–136.

97. Vail, DM; MacEwen, EG. Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Investigation. 2000. 18;8:781–792.

98. Khanna, C; Lindblad-Toh, K; Vail, D; London, C; Bergman, P; Barber, L; Breen, M; Kitchell, B; McNeil, E; Modiano, JF; Niemi, D; Comstock, KE; Ostrander, E; Westmoreland, S; Withrow, S. The dog as a cancer model. Nature Biotechnology. 2006. 24;9:1065–1066.

99. Pinho, SS; Carvalho, S; Cabral, J; Reis, CA; Gärtner, F. Canine tumors: a spontaneous animal model of human carcinogenesis. Translational Research. 2012. 159; 3:165–172.

100. Marconato, L; Gelain, ME; Comazzi, S. The dog as a possible animal model for human non-Hodgkin lymphoma: a review. Hematological Oncology. 2013. 31;1:1-9.

101. McGinnis, JM; Foege, WH. Actual causes of death in the United States. JAMA 1993. 270:2207-2212.

102. Byers, T; Nestle, M; McTiernan, A; Doyle, C; Currie-Williams, A; Gansler, T; Thun, M; and the American Cancer Society 2001 Nutrition and Physical Activity Guidelines Advisory Committee. American Cancer Society Guidelines on Nutrition and Physical Activity for Cancer Prevention: Reducing the Risk of Cancer with Healthy Food Choices and Physical Activity. CA Cancer J Clin. 2002. 52:92-119.

103. Giovannucci, E. Tomatoes, tomato-based products, lycopene and cancer: Review of the epidemiologic literature. J Natl Cancer Inst. 1999. 91:317-331.

104. Biesalski, HK; de Mesquita, BB; Chesson, A; Chytil, F; Grimble ,R; Hermus, RJJ; Kohrle, J; Lotan, R; Norpoth, K; Pastorino, U; Thurnham, D. European consensus statement on lung cancer: Risk factors and prevention. Cancer 1998. 48:167-176.

105. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med. 1994. 330:1029-1035.

106. Omenn, G; Goodman, G; Thornquist, M; Balmes, J; Cullen, MR; Glass, A; Keogh, JP; Meyskens, FLJ; Valanis, B, Williams, JH; Barnhart, S; Hammar, S. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med. 1996. 334:1150-1155.

107. Mettlin, C; Graham, S. Dietary risk factors in human bladder cancer. Am J Epidemiol. 1979. 110:255–263.

108. La Vecchia, C; Negri, E; Decarli, A; D’Avanzo, B; Liberati, C; Franceschi, S. Dietary factors in the risk of bladder cancer. Nutr Cancer. 1989. 12:93–101.

109. Nomura, AM; Kolonel, LN; Hankin, JH; Yoshizawa, CN. Dietary factors in cancer of lower urinary tract. Int J Cancer. 1991. 48:199–205.

110. Mills, PK; Beeson, WL; Phillips, RL; Fraser, GE. Bladder cancer in a low risk population: results from the Adventist Health Study. Am J Epidemiol. 1991. 133:230–239.

111. Momas, I; Daures, JP; Festy, B; Bontoux, J; Gremy, F. Relative importance of risk factors in bladder carcinogenesis: some new results about Mediterranean habits. Cancer Causes Control. 1994. 5:326–332.

112. Nagano, J; Kono, S; Preston, DL; Moriwaki, H; Sharp, GB; Koyama, K; Mabuchi, K. Bladder-cancer incidence in relation to vegetable and fruit consumption: a prospective study of atomic-bomb survivors. Int J Cancer. 2000. 86:132–138.

113. Wakai, K; Munehisa, T; Okamura, K; Yuba, H; Suzuki, KI; Murase, T; Obata, K; Itoh, H; Kato, T; Koayashi, M; Sakata, T; Otani, T; Ohshima, SI; Ohno, Y. Foods and nutrients in relation to bladder cancer risk: a case-control study in Aichi Prefecture, Central Japan. Nutr Cancer. 2000. 38:13–22.

114. Michaud, DS; Spiegelman, D; Clinton, SK; Rimm, EB; Willet, WC; Giovannucci, EL. Fruit and vegetable intake and incidence of bladder cancer in a male prospective cohort. J Natl Cancer Inst. 1999. 91:605–613.

115. Raghavan, M; Knapp, DW; Bonney, PL; Dawson, MH; Glickman, LT. Evaluation of the effect of dietary vegetable consumption on reducing risk of transitional cell carcinoma of the urinary bladder in Scottish Terriers. JAVMA. 227;1:94-100.

116. Trichopoulos, D; Willett, WC. Introduction: Nutrition and cancer. Cancer Causes Control. 1996. 7:3-4.

117. Potter, JD. Cancer prevention: epidemiology and experiment. Cancer Lett 1997. 114:7–9.

118. Liu, RH. Health benefits of fruits and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr. 2003. 8:517S–520S.

119. Burr, ML; Gilbert, JF; Holliday, RM; Elwood, PC; Fehily, AM; Rogers, S; Sweetnam, PM; Deadman, NM. Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet. 1989. 2:757–761.

120. DeLorgeril, M; Salen, P; Martin, JL; Monjaud, I; Delaye, J; Mamelle, N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation. 1999. 99:779–785.

121. Wang, C; Harris, WS; Chung, MM; Lichtenstein, AH; Balk, EM; Kupelnick, B; Jordan, HS; Lau, J. Fatty acids from fish or fish-oil supplements, but not linolenic acid, benefit cardiovascular disease outcomes in primary and secondary prevention studies; a systematic review. Am J Clin Nutr. 2006;83:5–17.

122. Sinclair, AJ. Long chain polyunsaturated fatty acids in the mammalian brain. Proc Nutr Soc. 1975. 34:287–291.

123. Anderson, GJ; Connor, WE; Corliss, JD. Docosahexaenoic acid is the preferred dietary n-3 fatty acid for the development of the brain, retina. Pediatr Res. 1990. 27:89–97.

124. Dodd, CE; Zicker, SC; Jewell, DE; Fritsch, DA; Lowry, SR; Allen, TA. Can a fortified food affect behavioral manifestations of age-related cognitive decline in dogs? Veterinary Medicine. 2003. 98: 396-408.

125. Innis, SM. Dietary (n-3) Fatty Acids and Brain Development. J Nutr. 2007. 137:855-859.

126. Christie, LA; Pop, V; Landsberg, GM; Zicker, SC; Head, E. “Cognitive dysfunction in dogs.” Small animal clinical nutrition, 5th ed. Eds: Hand, MS; Thatcher, CD; Remillard, RL; Roudebush, P; Novotny, BJ. Topeka, Kan: Mark Morris Institute, 2010. 715–730.

127. Zicker, SC; Jewell, DE; Yamka, RM; Milgram, NW. Evaluation of cognitive learning, memory, psychomotor, immunologic, and retinal functions in healthy puppies fed foods fortified with docosahexaenoic acid-rich fish oil from 8 to 52 weeks of age. JAVMA. 2012. 241;5:583-

128. James, MJ; Gibson, RA; Cleland, LG. Dietary polyunsaturated fatty acids and inflammatory mediator production. Am J Clin Nutr. 2000. 71:343S–348S.

129. Calder, PC. Dietary modification of inflammation with lipids. Proc Nutr Soc. 2002. 61:345–358.

130. Lee, TH; Hoover, RL; Williams, JD; Sperling, RI; Ravalese, J; Spur, BW; Robinson, DR; Corey, EJ; Lewis, RA; Austen, KF. Effect of dietary enrichment with eicosapentaenoic and docosahexaenoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function. N Engl J Med. 1985. 312:1217–1224.

131. Bauer, JE. Therapeutic use of fish oils in companion animals. JAVMA. 2011. 239;11:1441-1451.

132. Appel, LJ; Miller, ER; Seidler, AJ; Whelton, PK. Does supplementation of diet with “fish oil” reduce blood pressure? A meta-analysis of controlled clinical trials. Arch Intern Med. 1993. 153:1429–1438

133. De Caterina, R; Caprioli, R; Giannessi, D; Sicari, R; Galli, C; Lazzerini, G; Bernini, W; Carr, L; Rindi, P. n-3 fatty acids reduce proteinuria in patients with chronic glomerular disease. Kidney Int. 1993. 44:843–850.

134. Donadio, JV Jr; Bergstralh, EJ; Offord, KP; Spencer, DO; Holley, KE. A controlled trial of fish oil in IgA nephropathy. Mayo Nephrology Collaborative Group. N Engl J Med. 1994. 331:1194–1199.

135. Hansen, RA; Harris, MA; Pluhar, GE; Motta, T; Brevard, S; Ogilvie, GK; Fettman, MJ; Allen, KG. Fish oil decreases matrix metalloproteinases in knee synovia of dogs with inflammatory joint disease. J Nutr Biochem. 2008. 19:101–108.

136. Roush, JK; Dodd, CE; Fritsch, DA; Allen, TA; Jewell, DE; Schoenherr, WD; Richardson, DC; Leventhal, PS; Hahn, KA. Multicenter veterinary practice assessment of the effects of omega-3 fatty acids on osteoarthritis in dogs. J Am Vet Med Assoc. 2010. 236:59–66.

137. Roush, JK; Cross, AR; Rengerb, WC; Dodd, CE; Sixby, KA; Fritsch, DA; Allen, TA; Jewell, DE; Richardson, DC; Leventhal, PS; Hahn, KA. Evaluation of the effects of dietary supplementation with fish oil omega-3 fatty acids on weight bearing in dogs with osteoarthritis. J Am Vet Med Assoc. 2010. 236:67–73.

138. Scott, DW; Miller, WH; Reinhart, GA; Mohammed, HO; Bagladi, MS. Effect of an Omega-3/Omega-6 Fatty Acid-Containing Commercial Lamb and Rice Diet on Pruritus in Atopic Dogs: Results of a Single-Blinded Study. Can J Vet Res. 1997. 61:145-153.

139. Logas, D; Kunkle, GA. Double-blinded crossover study with marine oil supplementation containing high dose eicosapentaenoic acid for the treatment of canine pruritic skin disease. Vet Dermatol. 1994;5:99–104.

140. Abba, C; Mussa, PP; Vercelli, A; Raviri, G. Essential fatty acids supplementation in different-stage atopic dogs fed on a controlled diet. J Anim Physiol Anim Nutr (Berl). 2005. 89:203–207.

141. Mueller, RS; Fieseler, KV; Fettman, MJ; Zabel, S; Rosychuk, RA; Ogilvie, GK; Greenwalt, TL. Effect of omega-3 fatty acid on canine atopic dermatitis. J Small Anim Pract. 2004. 45:293–297.

142. Stenson, WF; Cort, D; Rodgers, J; Burakoff, R; DeSchryver-Kecskemeti, K; Gramlich, TL; Beeken, W. Dietary supplementation with fish oil in ulcerative colitis. Ann Intern Med. 1992. 116:609–614.

143. Belluzzi, A; Brignola, C; Campieri, M; Pera, A; Boschi, S; Miglioli, M. Effect of an enteric-coated fish-oil preparation on relapses in Crohn’s disease. N Engl J Med. 1996. 334:1557–1560.

144. Simopoulos, AP. Essential fatty acids in health and chronic disease. Am J Clin Nutr. 1999. 70(suppl):560S–569S

145. Kinoshita, K; Noguchi, M; Tanaka, M. Effects of linoleic acid, eicosapentaenoic acid and docosahexaenoic acid on the growth and metastases of MM48 mammary tumor transplants in mice. Int J Oncol. 1996. 8:575–81.

146. Chicco, A; D’Alessandro, ME; Karabatas, L; Gutman, R; Lombardo, YB. Effect of moderate levels of dietary fish oil on insulin secretion and sensitivity, and pancreatic insulin content in normal rats. Ann Nutr Metab. 1996. 40:61–70.

147. Pomposelli, JJ; Flores, EA; Blackburn, GL; Zeisel, SH; Bistrian, BR. Diets enriched with n-3 fatty acids ameliorate lactic acidosis by improving endotoxin-induced tissue hypoperfusion in guinea pigs. Ann Surg. 1991. 213:166–77.
148. Kaiser, L; Boyd, NF; Kriukow, V; Trichler, D. Fish consumption and breast cancer risk: an ecological study. Nutr Cancer. 1989. 12:61–8.

149. Yamamoto, D; Kiyozuka, Y; Adachi, Y; Takada, H; Hioki, K; Tsubura, A. Synergistic action of apoptosis induced by eicosapentaenoic acid and TNP-470 on human breast cancer cells. Breast Cancer Res Treat. 1999. 55:149–60.

150. Franceschi, S; Favero, A; La Vecchia, C; Negri, E; Dal Maso, L; Salvini, D; Decarli, A; Giacosa, A. Influence of food groups and food diversity on breast cancer risk in Italy. Int J Cancer. 1995. 63:785-789.

151. Braga, C; La Vecchia, C; Negri, E; Franceschi, S; Parpinel, M. Intake of selected foods and nutrients and breast cancer risk: an age-and menopause-specific analysis. Nutr Cancer. 1997. 28:258-263.

152. Fay, MP; Freedman, LS; Clifford, SK; Midthune, SN. Effect of different types and amounts of fat on the development of mammary tumors in rodents: a review. Cancer Res. 1997. 57:3979-3988.

153. Thompson, LU; Rickard, SE; Orcheson, LJ; Seidl, MM. Flaxseed and its lignin and oil components reduce mammary tumor growth at a late stage of carcinogenesis. Carcinogenesis. 1996. 17:1373-1376.

154. Bougnoux, P; Koscielny, S; Chajes, V; Descamps, P; Couet, C; Calais, G. Alpha-linolenic acid content of adipose breast tissue: a host determinant of the risk of early metastasis in breast cancer. Br J Cancer. 1994. 70:330-334.

155. Ogilvie, GK; Fettman, MJ; Mallinckrodt, CH; Walton, JA; Hansen, RA; Davenport, DJ; Gross, KJ; Richardson, KL; Rogers, Q; Hand, MS. Effect of Fish Oil, Arginine, and Doxorubicin Chemotherapy on Remission and Survival Time for Dogs with Lymphoma: A Double-Blind, Randomized Placebo-Controlled Study. Cancer. 2000. 88;8:1916-1928.

156. Nutramaxx® Laboratories. “Nutrition Label of Welactin® Canine.” Accessed: 30 January 2016.

157. Butler Schein™ Animal Health. “Nutrition Label of Omega Tri-V Caps For Large Breeds Over 61 lbs.” Dublin, OH.

158. Seilbert, LM; Landsberg, GM. Diagnosis and Management of Patients Presenting with Behavior Problems. Animal Practice. 2008. 5:937-950.

159. McMillan, FD. “Stress, distress, and emotion: distinctions and implications for mental well-being.” Mental health and well-being in animals. Ed: F.D. McMillan. Blackwell, 2005; 93–111.

160. Horwitz, DF. Differences and similarities between behavioral and internal medicine. J Am Vet Med Assoc. 2000. 217;9:1372-1376.

161. Crowell-Davis, SL; Murray, T. Veterinary Psychopharmacology. Blackwell Publishing, Ames, IA. 2006.

162. Herron, ME; Shofer, FS; Reisner, HR. Retrospective evaluation of the effects of diazepam in dogs with anxiety-related behavior problems. J. Am. Vet. Med. Assoc. 2008. 233;1420-1424.

163. Sherman, BL; Mills, DS. Canine anxieties and phobias: an update on separation anxiety and noise aversions. Vet. Clin. North. Am. Small. Anim. Pract. 2008. 38; 1081-1106.

164. Plumb, DC. Plumb’s Veterinary Drug Handbook, 5th Edn. Ames, IA: Blackwell Publishing, 2005. pp. 238.

165. Nathan, PJ; Lu, K; Gray, M; Oliver, C. The neuropharmacology of L-theanine (N-ethyl-L-glutamine): a possible neuroprotective and cognitive enhancing agent. J. Herb. Pharmacother. 2006. 6;21-30.

166. Araujo, JA; De Rivera, C; Ethier, JL; Landsberg, GM; Denenberg, S; Arnold, S; Milgram, NW. ANXITANE tablets reduce fear of human beings in a laboratory model of anxiety-related behavior. J. Vet. Behav.: Clin. Appl. Res. 2010. 5;268-275.

167. Dramard, V; Kern, L; Hofmans, J; Halsberghe, C. Clinical efficacy of L-theanine tablets to reduce anxiety-related emotional disorders in cats: a pilot open-label clinical trial. J. Vet. Behav.: Clin. Appl. Res. 2007. 2;85-86.

168. Pike, AL; Horwitz, DF; Lobprise, H. An open-label prospective study of the use of L-theanine (Anxitane) in storm-sensitive client-owned dogs. Journal of Veterinary Behavior. 2015. 10:324-331.

169. Virbac. “Insert for Anxitane® (Suntheanine®) Chewable Tablets.” Fort Worth, TX.

170. PDR for Herbal Medicines (2nd ed). Medical Economics Company Inc., Montvale, NJ. 2000. 331–335; 461–463.

171. Maday, E; Szoke, E; Muskath, Z, Lemberkovics, E. A study of the production of essential oils in chamomile hairy root cultures. Eur J Drug Metab Pharmacokinet. 1999. 24:303–308.

172. Schwartz, S. “Western Psychoactive Herbs.” Psychoactive Herbs in Veterinary Behavior Medicine. Blackwell Publishing, 2005. 3-92.

173. Shinominya, K; Inour, T; Utsu, Y; Tokunaga, S; Masuoka, T; Ohmori, A; Kamei, C. Hypnotic Activities of Chamomile and Passiflora Extracts in Sleep-Disturbed Rats. Biol Pharm Bull. 2005. 28;5:808-810.

174. Awad, R; Levac, D; Cybulska, P; Merali, Z; Trudeau, VL; Arnason, JT. Effects of traditionally used anxiolytic botanicals on enzymes of the gamma-aminobutyric acid (GABA) system. Can J Physiol Pharmacol. 2007. 85:933-942,.

175. Yamada, K; Miura, T; Mimaki, Y; Sashida, Y. Effect of inhalation of chamomile oil vapour on plasma ACTH level in ovariectomized-rat under restriction stress. Biol Pharm Bull. 1996. 19:1244–1246.

176. Amsterdam, JD; Li, Y; Soeller, I; Rockwell, K; Mao, JJ; Shults, J. A randomized, double-blind, placebo-controlled trial of oral Matricaria recutita (Chamomile) extract therapy for generalized anxiety disorder. J Clin Psychopharmacol. 2009. 29:378-382.

177. Roberts, A; Williams, JM. The effect of olfactory stimulation on fluency, vividness of imagery and associated mood: a preliminary study. Br J Med Psychol. 1992. 65:197–199.

178. Graham, L; Wells, D; Hepper, P. The influence of olfactory stimulation on the behavior of dogs housed in a rescue shelter. App Ani Behavior Sci. .2005. 91:143-153.

179. Mills, S; Bone, K. Principles and Practice of Phytotherapy, Modern Herbal Medicine. Churchill Livingstone; Philadelphia, PA. 2000. 319–327.

180. Russo, E. Handbook of Psychotropic Herbs: A Scientific Analysis of Herbal Remedies for Psychiatric Conditions. The Haworth Press; Binghamton, NY. 2001. 115–120; 125-129.

181. Means, C. Selected herbal hazards. Vet Clin Small Anim Pract. 2002. 32:367–382.

182. Soulimani; R; Fleurentin, J; Mortier, F; Misslin, R; Derrieu, G; Pelt, JM. Neurotropic action of the hydroacloholic extract of Melissa officinalis in the mouse. Planta Medica. 1991. 57:105–109.

183. Perry, EK; Pickering, AT; Want, WW; Houghton, PJ; Perry, NS. Medicinal plants and Alzheimer’s disease: from ethnobotany to phytotherapy. J Pharm Pharmacol. 1999. 51:527–534.

184. Akhondzadeh, S; Noroozian, M; Mohammadi, M; Ohadinia, S; Jamshidi, A; Khani, M. Melissa officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomized, placebo controlled trial. J Neurol Neurosurg Psychiatry. 2003. 74:863–866.

185. Kennedy, DO; Wake, G; Savelev, S; Tildesley, NTJ; Perry, EK; Wesnes, KA; Scholey, AM. Modulation of mood and cognitive performance following acute administration of single doses of Melissa officinalis (Lemon Balm) with human CNS nicotinic and muscarinic receptor-binding properties. Neuropsychopharmacology. 2003. 28:1871–1881.

186. Head, E; McCleary, R; Hahn, FF; Milgram, NW; Cotman, CW. Region-specific age at onset of beta-amyloid in dogs. Neurobiol Aging. 2000. 21:89–96.

187. Landsberg, GM; Nichol, J; Araujo, JA. Cognitive dysfunction syndrome: A disease of canine and feline brain aging. Vet Clin North Am Small Anim Pract. 2012. 42:749–768.

188. Osella, MC; Re, G; Odore, R; Girardi, C; Badino, P; Barbero, R; Bergamasco, L. Canine cognitive dysfunction syndrome: Prevalence, clinical signs and treatment with a neuroprotective nutraceutical. Appl Anim Behav Sci. 2007. 105:297–310.

189. Fast, R; Schutt, T; Toft, N; Moller, A; Berendt, M. An Observational Study with Long-Term Follow-Up of Canine Cognitive Dysfunction: Clinical Characteristics, Survival, and Risk Factors. J Vet Intern Med. 2013. 27:822-829.

190. Wong, AHC; Smith, M; Boon, HS. Herbal remedies in psychiatric practice. Archive of General Psychiatry. 1998. 55:1033–1044.

Source & Contact

True Leaf Medicine International Ltd.
#32, 100 Kalamalka Lake Road
Vernon B.C. Canada V1T 9G1
T: +1 778.475.5323
F: +1 250.545.3239
E: info@trueleaf.com
W: www.trueleaf.com 


  

Company Details

True Leaf Medicine International Ltd.
100 Kalamalka Lake Road, Unit 32
Vernon, BC V1T 9G1, Canada
Phone: +1 778-389-9933
Email: kevin@trueleaf.com
www.trueleaf.com

Shares Issued & Outstanding: 52,800,371

Canadian Symbol (CSE): MJ
Current Price: $0.26 CAD (July 22, 2016)
Market Capitalization: $14 million CAD

German Symbol / WKN (XETRA): TLA / A14NM1
Current Price: €0.20 EUR (July 22, 2016)
Market Capitalization: €11 million EUR

 


  

Analyst Coverage

Research #16 “New sales channel for the market buzz: True Leaf products now also sell online“ 

Research #15 “Hemp for Dogs: True Leaf from Canada brings a special treat to the worlds leading trade-show Interzoo“ 

Research #14 “True Leaf pushes the gas pedal and brings True Hemp to Europe“

Research #13 “True Leaf conquers the US Pet Food Market” 

Research #12 “True Leaf To Sell Hemp-Based Products in 3500 Stores in the US” (March 29, 2016)

Research #11 “True Leaf‘s Product Line Now Available in 47 Canadian Retail Stores” (February 9, 2016)

Research #10 “True Leaf‘s Selling Fast” (December 10, 2015)

Research #9 “True Leaf Expands to Europe” (November 2, 2015)

Research #8 “True Leaf Unveils New Product Line” (September 17, 2015)

Research #7 “Another Key Piece for the True Leaf Puzzle” (September 8, 2015)

Research #6 “True Leaf Pet’s Hemp Chew Product Line to be Distributed Across Canada” (August 12, 2015)

Research #5 “Interview with True Leaf‘s CEO Darcy Bomford“ (August 6, 2015)

Research #4 “One Step Closer Becoming A Licenced Medical Marijuana Producer“ (July 21, 2015)

Research #3 “True Leaf on its way to production“ (June 5,2015)

Research #2 “True Leaf To Enter The Pet Food Market With Hemp Products In Fall of 2015“ (April 9, 2015)

Research #1 “True Leaf Medicine International Ltd. Goes Public“ (February 9, 2015)

Disclaimer: Please read the full disclaimer within the full research report as a PDF (here) as fundamental risks and conflicts of interest exist.

Write a comment

Name:
Likes | 16
Dislikes | 0
COMPANY INFO
Name: True Leaf Medicine International Ltd.
Canada Symbol: MJ
Germany Symbol / WKN: TLA / A14NM1
Shares Issued & Outstanding: 52,800,371
Phone: +1 778-389-9933
Email: kevin@trueleaf.com
Web: www.trueleaf.com
SUBSCRIBE

Anmeldung zum Newsletter:

e-mail:
Vorname:
Nachname:
Newsletter deutsch:
Newsletter englisch:
Sie erhalten nach der Anmeldung eine E-Mail mit einem Bestätigungslink. Erst nach Erfolgreicher Bestätigung sind Sie für den Newsletter angemeldet.

DICTIONARY

english/german - german/english